Name | Last modified | Size | License | |
---|---|---|---|---|
Parent Directory | ||||
cached-property | - | |||
grpcio | - | |||
h5py | - | |||
keras-applications | - | |||
keras-preprocessing | - | |||
numpy | - | |||
six | - | |||
tensorflow-aarch64 | - |
Release 2.6.0-rc2
Breaking Changes
tf.train.experimental.enable_mixed_precision_graph_rewrite
is removed, as the API only works in graph mode and is not customizable. The function is still accessible undertf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite
, but it is recommended to use the Keras mixed precision API instead.tf.lite
:- Remove
experimental.nn.dynamic_rnn
,experimental.nn.TfLiteRNNCell
andexperimental.nn.TfLiteLSTMCell
since they’re no longersupported. It’s recommended to just use keras lstm instead.
- Remove
- Keras been split into a separate PIP package (
keras
), and its code has been moved to the GitHub repositorykeras-team/keras. The API endpoints fortf.keras
stay unchanged, but are now backed by thekeras
PIP package. The existing code in tensorflow/python/keras is a staled copy and will be removed in future release (2.7). Please remove any imports totensorflow.python.keras
and replace them with public tf.keras API instead.
Known Caveats
- TF Core:
- A longstanding bug in
tf.while_loop
, which caused it to execute sequentially, even whenparallel_iterations>1
, has now been fixed. However, the increased parallelism may result in increased memory use. Users who experience unwanted regressions should reset theirwhile_loop
’sparallel_iterations
value to 1, which is consistent with prior behavior.
- A longstanding bug in
Major Features and Improvements
tf.keras
:- Keras has been split into a separate PIP package (
keras
), and its code has been moved to the GitHub repository keras-team/keras. The API endpoints fortf.keras
stay unchanged, but are now backed by thekeras
PIP package. All Keras-related PRs and issues should now be directed to the GitHub repository keras-team/keras. tf.keras.utils.experimental.DatasetCreator
now takes an optionaltf.distribute.InputOptions
for specific options when used with distribution.tf.keras.experimental.SidecarEvaluator
is now available for a program intended to be run on an evaluator task, which is commonly used to supplement a training cluster running withtf.distribute.experimental.ParameterServerStrategy
(see `https://www.tensorflow.org/tutorials/distribute/parameter_server_training). It can also be used with single-worker training or other strategies. See docstring for more info.- Preprocessing layers moved from experimental to core.
- Import paths moved from
tf.keras.layers.preprocessing.experimental
totf.keras.layers
.
- Import paths moved from
- Updates to Preprocessing layers API for consistency and clarity:
StringLookup
andIntegerLookup
default formask_token
changed toNone
. This matches the default masking behavior ofHashing
andEmbedding
layers. To keep existing behavior, passmask_token=""
during layer creation.- Renamed
"binary"
output mode to"multi_hot"
forCategoryEncoding
,StringLookup
,IntegerLookup
, andTextVectorization
. Multi-hot encoding will no longer automatically uprank rank 1 inputs, so these layers can now multi-hot encode unbatched multi-dimensional samples. - Added a new output mode
"one_hot"
forCategoryEncoding
,StringLookup
,IntegerLookup
, which will encode each element in an input batch individually, and automatically append a new output dimension if necessary. Use this mode on rank 1 inputs for the old"binary"
behavior of one-hot encoding a batch of scalars. Normalization
will no longer automatically uprank rank 1 inputs, allowing normalization of unbatched multi-dimensional samples.
- Keras has been split into a separate PIP package (
tf.lite
:- The recommended Android NDK version for building TensorFlow Lite has been changed from r18b to r19c.
- Supports int64 for mul.
- Supports native variable builtin ops - ReadVariable, AssignVariable.
- Converter:
- Experimental support for variables in TFLite. To enable through conversion, users need to set
experimental_enable_resource_variables
on tf.lite.TFLiteConverter to True. Note: mutable variables is only available usingfrom_saved_model
in this release, support for other methods is coming soon. - Old Converter (TOCO) is getting removed from next release. It’s been deprecated for few releases already.
- Experimental support for variables in TFLite. To enable through conversion, users need to set
tf.saved_model
:- SavedModels can now save custom gradients. Use the option
tf.saved_model.SaveOption(experimental_custom_gradients=True)
to enable this feature. The documentation in Advanced autodiff has been updated. - Object metadata has now been deprecated and no longer saved to the SavedModel.
- SavedModels can now save custom gradients. Use the option
- TF Core:
- Added
tf.config.experimental.reset_memory_stats
to reset the tracked peak memory returned bytf.config.experimental.get_memory_info
.
- Added
tf.data
:- Added
target_workers
param todata_service_ops.from_dataset_id
anddata_service_ops.distribute
. Users can specify"AUTO"
,"ANY"
, or"LOCAL"
(case insensitive). If"AUTO"
, tf.data service runtime decides which workers to read from. If"ANY"
, TF workers read from any tf.data service workers. If"LOCAL"
, TF workers will only read from local in-processs tf.data service workers."AUTO"
works well for most cases, while users can specify other targets. For example,"LOCAL"
would help avoid RPCs and data copy if every TF worker colocates with a tf.data service worker. Currently,"AUTO"
reads from any tf.data service workers to preserve existing behavior. The default value is"AUTO"
.
- Added
Bug Fixes and Other Changes
- TF Core:
- Added
tf.lookup.experimental.MutableHashTable
, which provides a generic mutable hash table implementation.- Compared to
tf.lookup.experimental.DenseHashTable
this offers lower overall memory usage, and a cleaner API. It does not require specifying adelete_key
andempty_key
that cannot be inserted into the table.
- Compared to
- Added support for specifying number of subdivisions in all reduce host collective. This parallelizes work on CPU and speeds up the collective performance. Default behavior is unchanged.
- Add an option
perturb_singular
totf.linalg.tridiagonal_solve
that allows solving linear systems with a numerically singular tridiagonal matrix, e.g. for use in inverse iteration. - Added
tf.linalg.eigh_tridiagonal
that computes the eigenvalues of a Hermitian tridiagonal matrix. tf.constant
now places its output on the current default device.- SavedModel
- Added
tf.saved_model.experimental.TrackableResource
, which allows the creation of custom wrapper objects for resource tensors. - Added a SavedModel load option to allow restoring partial checkpoints into the SavedModel. See [
tf.saved_model.LoadOptions
] (https://www.tensorflow.org/api_docs/python/tf/saved_model/LoadOptions) for details.
- Added
- Added a new op
SparseSegmentSumGrad
to match the other sparse segment gradient ops and avoid an extra gather operation that was in the previous gradient implementation. - Added a new session config setting
internal_fragmentation_fraction
, which controls when the BFC Allocator needs to split an oversized chunk to satisfy an allocation request. - Added
tf.get_current_name_scope()
which returns the current full name scope string that will be prepended to op names.
- Added
tf.data
:- Promoting
tf.data.experimental.bucket_by_sequence_length
API totf.data.Dataset.bucket_by_sequence_length
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.get_single_element
API totf.data.Dataset.get_single_element
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.group_by_window
API totf.data.Dataset.group_by_window
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.RandomDataset
API totf.data.Dataset.random
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.scan
API totf.data.Dataset.scan
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.snapshot
API totf.data.Dataset.shapshot
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.take_while
API totf.data.Dataset.take_while
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.ThreadingOptions
API totf.data.ThreadingOptions
and deprecating the experimental endpoint. - Promoting
tf.data.experimental.unique
API totf.data.Dataset.unique
and deprecating the experimental endpoint. - Added
stop_on_empty_dataset
parameter tosample_from_datasets
andchoose_from_datasets
. Settingstop_on_empty_dataset=True
will stop sampling if it encounters an empty dataset. This preserves the sampling ratio throughout training. The prior behavior was to continue sampling, skipping over exhausted datasets, until all datasets are exhausted. By default, the original behavior (stop_on_empty_dataset=False
) is preserved. - Removed previously deprecated tf.data statistics related APIs:
tf.data.Options.experimental_stats
tf.data.experimental.StatsAggregator
tf.data.experimental.StatsOptions.*
tf.data.experimental.bytes_produced_stats
tf.data.experimental.latency_stats
- Removed the following experimental tf.data optimization APIs:
tf.data.experimental.MapVectorizationOptions.*
tf.data.experimental.OptimizationOptions.filter_with_random_uniform_fusion
tf.data.experimental.OptimizationOptions.hoist_random_uniform
tf.data.experimental.OptimizationOptions.map_vectorization
*tf.data.experimental.OptimizationOptions.reorder_data_discarding_ops
- Promoting
tf.keras
:- Fix usage of
__getitem__
slicing in Keras Functional APIs when the inputs areRaggedTensor
objects. - Add
keepdims
argument to allGlobalPooling
layers. - Add
include_preprocessing
argument toMobileNetV3
architectures to control the inclusion ofRescaling
layer in the model. - Add optional argument (
force
) tomake_(train|test|predict)_funtion
methods to skip the cached function and generate a new one. This is useful to regenerate in a single call the compiled training function when any.trainable
attribute of any model’s layer has changed. - Models now have a
save_spec
property which contains theTensorSpec
specs for calling the model. This spec is automatically saved when the model is called for the first time.
- Fix usage of
tf.linalg
:- Add
CompositeTensor
as a base class toLinearOperator
.
- Add
tf.lite
:- Fix mean op reference quantization rounding issue.
- Added
framework_stable
BUILD target, which links in only the non-experimental TF Lite APIs. - Remove deprecated Java
Interpreter
methods:modifyGraphWithDelegate
- UseInterpreter.Options.addDelegate
setNumThreads
- UseInterpreter.Options.setNumThreads
- Add Conv3DTranspose as a builtin op.
tf.summary
:- Fix
tf.summary.should_record_summaries()
so it correctly reflects when summaries will be written, even whentf.summary.record_if()
is not n effect, by returning True tensor if default writer is present.
- Fix
- Grappler:
- Disable default Grappler optimization timeout to make the optimization pipeline deterministic. This may lead to increased model loading time, because time spent in graph optimizations is now unbounded (was 20 minutes).
- Deterministic Op Functionality (enabled by setting
TF_DETERMINISTIC_OPS
to"true"
or"1"
):- Add a deterministic GPU implementation of
tf.nn.softmax_cross_entropy_with_logits
. See PR 49178. - Add a deterministic CPU implementation of
tf.image.crop_and_resize
. See PR 48905. - Add determinism-unimplemented exception-throwing to the following ops. When op-determinism is expected, an attempt to use the specified paths through the following ops on a GPU will cause
tf.errors.UnimplementedError
(with an understandable message) to be thrown.
- Add a deterministic GPU implementation of
Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Aadhitya A, Abhilash Mahendrakar, Abhishek Varma, Abin Shahab, Adam Hillier, Aditya Kane, AdityaKane2001, ag.ramesh, Amogh Joshi, Armen Poghosov, armkevincheng, Avrosh K, Ayan Moitra, azazhu, Banikumar Maiti, Bas Aarts, bhack, Bhanu Prakash Bandaru Venkata, Billy Cao, Bohumir Zamecnik, Bradley Reece, CyanXu, Daniel Situnayake, David Pal, Ddavis-2015, DEKHTIARJonathan, Deven Desai, Duncan Riach, Edward, Eli Osherovich, Eugene Kuznetsov, europeanplaice, evelynmitchell, Evgeniy Polyakov, Felix Vollmer, Florentin Hennecker, François Chollet, Frederic Bastien, Fredrik Knutsson, Gabriele Macchi, Gaurav Shukla, Gauri1 Deshpande, geetachavan1, Georgiy Manuilov, H, Hengwen Tong, Henri Woodcock, Hiran Sarkar, Ilya Arzhannikov, Janghoo Lee, jdematos, Jens Meder, Jerry Shih, jgehw, Jim Fisher, Jingbei Li, Jiri Podivin, Joachim Gehweiler, Johannes Lade, Jonas I. Liechti, Jonas Liechti, Jonas Ohlsson, Jonathan Dekhtiar, Julian Gross, Kaixi Hou, Kevin Cheng, Koan-Sin Tan, Kulin Seth, linzewen, Liubov Batanina, luisleee, Lukas Geiger, Mahmoud Abuzaina, mathgaming, Matt Conley, Max H. Gerlach, mdfaijul, Mh Kwon, Michael Martis, Michal Szutenberg, Måns Nilsson, nammbash, Neil Girdhar, Nicholas Vadivelu, Nick Kreeger, Nirjas Jakilim, okyanusoz, Patrice Vignola, Patrik Laurell, Pedro Marques, Philipp Hack, Phillip Cloud, Piergiacomo De Marchi, Prashant Kumar, puneeshkhanna, pvarouktsis, QQ喵, Rajeshwar Reddy T, Rama Ketineni, Reza Rahimi, Robert Kalmar, rsun, Ryan Kuester, Saduf2019, Sean Morgan, Sean Moriarity, Shaochen Shi, Sheng, Yang, Shu Wang, Shuai Zhang, Soojeong, Stanley-Nod, Steven I Reeves, stevenireeves, Suraj Sudhir, Sven Mayer, Tamas Bela Feher, tashuang.zk, tcervi, Teng Lu, Thales Elero Cervi, Thibaut Goetghebuer-Planchon, Thomas Walther, Till Brychcy, Trent Lo, Uday Bondhugula, vishakha.agrawal, Vishnuvardhan Janapati, wamuir, Wenwen Ouyang, wenwu, Williard Joshua Jose, xiaohong1031, Xiaoming (Jason) Cui, Xinan Jiang, Yasir Modak, Yi Li, Yong Tang, zilinzhu, 박상준, 이장