Name | Last modified | Size | License | |
---|---|---|---|---|
Parent Directory | ||||
cached-property | - | |||
grpcio | - | |||
h5py | - | |||
keras-applications | - | |||
keras-preprocessing | - | |||
numpy | - | |||
scipy | - | |||
six | - | |||
tensorflow-aarch64 | - |
Release 2.7.0-rc0
Breaking Changes
tf.keras
:- The methods
Model.fit()
,Model.predict()
, andModel.evaluate()
will no longer uprank input data of shape(batch_size,)
to become(batch_size, 1)
. This enablesModel
subclasses to process scalar data in theirtrain_step()
/@test_step()@/@predict_step()@ methods.
Note that this change may break certain subclassed models. You can revert back to the previous behavior by adding upranking yourself in thetrain_step()
/@test_step()@/@predict_step()@ methods, e.g.if x.shape.rank == 1: x = tf.expand_dims(x, axis=-1)
. Functional models as well as Sequential models built with an explicit input shape are not affected. - The methods
Model.to_yaml()
andkeras.models.model_from_yaml
have been replaced to raise aRuntimeError
as they can be abused to cause arbitrary code execution. It is recommended to use JSON serialization instead of YAML, or, a better alternative, serialize to H5. LinearModel
andWideDeepModel
are moved to thetf.compat.v1.keras.models.
namespace (tf.compat.v1.keras.models.LinearModel
andtf.compat.v1.keras.models.WideDeepModel
), and theirexperimental
endpoints (tf.keras.experimental.models.LinearModel
andtf.keras.experimental.models.WideDeepModel
) are being deprecated.- RNG behavior change for all
tf.keras.initializers
classes. For any class constructed with a fixed seed, it will no longer generate same value when invoked multiple times. Instead, it will return different value, but a determinisitic sequence. This change will make the initialize behavior align between v1 and v2.
- The methods
tf.lite
:- Rename fields
SignatureDef
table in schema to maximize the parity with TF SavedModel’s Signature concept. - Deprecate Makefile builds. Makefile users need to migrate their builds to CMake or Bazel. Please refer to the Build TensorFlow Lite with CMake and Build TensorFlow Lite for ARM boards for the migration.
- Deprecate
tflite::OpResolver::GetDelegates
. The list returned by TfLite’sBuiltinOpResolver::GetDelegates
is now always empty. Instead, recommend using new methodtflite::OpResolver::GetDelegateCreators
in order to achieve lazy initialization on TfLite delegate instances.
- Rename fields
- TF Core:
tf.Graph.get_name_scope()
now always returns a string, as documented. Previously, when called withinname_scope("")
orname_scope(None)
contexts, it returnedNone
; now it returns the empty string.tensorflow/core/ir/
contains a new MLIR-based Graph dialect that is isomorphic to GraphDef and will be used to replace GraphDef-based (e.g., Grappler) optimizations.- Deprecated and removed
attrs()
function in shape inference. All attributes should be queried by name now (rather than range returned) to enable changing the underlying storage there. - The following Python symbols were accidentally added in earlier versions of TensorFlow and now are removed. Each symbol has a replacement that should be used instead, but note the replacement’s argument names are different.
tf.quantize_and_dequantize_v4
(accidentally introduced in TensorFlow 2.4): Usetf.quantization.quantize_and_dequantize_v2
instead.tf.batch_mat_mul_v3
(accidentally introduced in TensorFlow 2.6): Usetf.linalg.matmul
instead.tf.sparse_segment_sum_grad
(accidentally introduced in TensorFlow 2.6): Usetf.raw_ops.SparseSegmentSumGrad
instead. Directly calling this op is typically not necessary, as it is automatically used when computing the gradient oftf.sparse.segment_sum
.
- Renaming of tensorflow::int64 to int_64_t in numerous places (the former is an alias for the latter) which could result in needing to regenerate selective op registration headers else execution would fail with unregistered kernels error.
Major Features and Improvements
- Improvements to the TensorFlow debugging experience:
Previously, TensorFlow error stack traces involved many internal frames, which could be challenging to read through, while not being actionable for end users. As of TF 2.7, TensorFlow filters internal frames in most errors that it raises, to keep stack traces short, readable, and focused on what’s actionable for end users (their own code).
This behavior can be disabled by calling
tf.debugging.disable_traceback_filtering()
, and can be re-enabled viatf.debugging.enable_traceback_filtering()
. If you are debugging a TensorFlow-internal issue (e.g. to prepare a TensorFlow PR), make sure to disable traceback filtering. You can check whether this feature is currently enabled by callingtf.debugging.is_traceback_filtering_enabled()
.
Note that this feature is only available with Python 3.7 or higher.
Improve the informativeness of error messages raised by Keras
Layer.__call__()
, by adding the full list of argument values passed to the layer in every exception.
Introduce the
tf.compat.v1.keras.utils.track_tf1_style_variables
decorator, which enables using large classes of tf1-style variable_scope,get_variable
, andcompat.v1.layer
-based components from within TF2 models running with TF2 behavior enabled.tf.data
:
tf.data service now supports auto-sharding. Users specify the sharding policy with
tf.data.experimental.service.ShardingPolicy
enum. It can be one ofOFF
(equivalent to today’s"parallel_epochs"
mode),DYNAMIC
(equivalent to today’s"distributed_epoch"
mode), or one of the static sharding policies:FILE
,DATA
,FILE_OR_DATA
, orHINT
(corresponding to values oftf.data.experimental.AutoShardPolicy
).
Static sharding (auto-sharding) requires the number of tf.data service workers be fixed. Users need to specify the worker addresses intensorflow.data.experimental.DispatcherConfig
.tf.data.experimental.service.register_dataset
now accepts optionalcompression
argument.
- Keras:
tf.keras.layers.Conv
now includes a publicconvolution_op
method. This method can be used to simplify the implementation of Conv subclasses. There are two primary ways to use this new method. The first is to use the method directly in your owncall
method:python class StandardizedConv2D(tf.keras.layers.Conv2D): def call(self, inputs): mean, var = tf.nn.moments(self.kernel, axes=[0, 1, 2], keepdims=True) return self.convolution_op(inputs, (self.kernel - mean) / tf.sqrt(var + 1e-10))
Alternatively, you can overrideconvolution_op
:python class StandardizedConv2D(tf.keras.Layer): def convolution_op(self, inputs, kernel): mean, var = tf.nn.moments(kernel, axes=[0, 1, 2], keepdims=True) # Author code uses std + 1e-5 return super().convolution_op(inputs, (kernel - mean) / tf.sqrt(var + 1e-10))
- Added
merge_state()
method totf.keras.metrics.Metric
for use in distributed computations. - Added
sparse
andragged
options totf.keras.layers.TextVectorization
to allow forSparseTensor
andRaggedTensor
outputs from the layer. - distribute.experimental.rpc package:
distribute.experimental.rpc package introduces APIs to create a GRPC based server to register tf.function methods and a GRPC client to invoke remote registered methods. RPC APIs are intended for multi-client setups i.e. server and clients are started in separate binaries independently.
Example usage to create server:
server = tf.distribute.experimental.rpc.Server.create("grpc", "127.0.0.1:1234") @tf.function(input_signature=[ tf.TensorSpec([], tf.int32), tf.TensorSpec([], dtypes.int32) ]) def _remote_multiply(a, b): return tf.math.multiply(a, b) server.register("multiply", _remote_multiply)
Example usage to create client:
bc(python). client = tf.distribute.experimental.rpc.Client.create(“grpc”, address) a = tf.constant(2, dtype=tf.int32) b = tf.constant(3, dtype=tf.int32) result = client.multiply(a, b)
tf.lite
:
- Add experimental API
experimental_from_jax
to support conversion from Jax models to TensorFlow Lite. - Support uint32 data type for cast op.
- Add experimental quantization debugger
tf.lite.QuantizationDebugger
- Add experimental API
- Extension Types
Add experimental API to define new Python classes that can be handled by TensorFlow APIs. To create an extension type, simply define a Python class with
tf.experimental.ExtensionType
as its base, and use type annotations to specify the type for each field. E.g.:
bc(python). class MaskedTensor(tf.experimental.ExtensionType): values: tf.Tensor mask: tf.TensorThe
tf.ExtensionType
base class works similarly to @typing.NamedTuple@ and “dataclasses.dataclass</tt>":https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass from the standard Python library.</li> <li>Extension types are supported by Keras, tf.data, TF-hub, SavedModel, tf.function, control flow ops, py_function, and distribution strategy.</li> <li>Add "dispatch decorators" that can be used to override the default behavior of TensorFlow ops (such as
tf.add@ ortf.concat
) when they are applied to ExtensionType values.The
BatchableExtensionType
API can be used to define extension types that support APIs that make use of batching, such astf.data.Dataset
andtf.map_fn
.
Bug Fixes and Other Changes
- TF Core:
- Random number generation (RNG) system
- Add argument
alg
totf.random.stateless_*
functions to explicitly select the RNG algorithm. - Add
tf.nn.experimental.stateless_dropout
, a stateless version oftf.nn.dropout
. tf.random.Generator
now can be created inside the scope oftf.distribute.experimental.ParameterServerStrategy
andtf.distribute.experimental.CentralStorageStrategy
.
- Add argument
- Add an experimental session config
tf.experimental.disable_functional_ops_lowering
which disables functional control flow op lowering optimization. This is useful when executing within a portable runtime where control flow op kernels may not be loaded due to selective registration. - Add a new experimental argument
experimental_is_anonymous
totf.lookup.StaticHashTable.__init__
to create the table in anonymous mode. In this mode, the table resource can only be accessed via resource handles (not resource names) and will be deleted automatically when all resource handles pointing to it are gone.
- Random number generation (RNG) system
tf.data
:- Introduce the
tf.data.experimental.at
API which provides random access for input pipelines that consist of transformations that support random access. The initial set of transformations that support random access includes:tf.data.Dataset.from_tensor_slices
,@tf.data.Dataset.shuffle@,tf.data.Dataset.batch
,tf.data.Dataset.shard
,tf.data.Dataset.map
, andtf.data.Dataset.range
. - Promote
tf.data.Options.experimental_deterministic
API totf.data.Options.deterministic
and deprecate the experimental endpoint. - Move autotuning options from@tf.data.Options.experimental_optimization.autotune*@ to a newly created
tf.data.Options.autotune.*
and remove support fortf.data.Options.experimental_optimization.autotune_buffers
. - Add support for user-defined names of tf.data core Python API, which can be used to disambiguate tf.data events in TF Profiler Trace Viewer.
- Promote
tf.data.experimental.sample_from_datasets
API totf.data.Dataset.sample_from_datasets
and deprecate the experimental endpoint.
- Introduce the
- TF SavedModel:
- Custom gradients are now saved by default. See
tf.saved_model.SaveOptions
to disable this.
- Custom gradients are now saved by default. See
- XLA:
- Add a new API that allows custom call functions to signal errors. The old API will be deprecated in a future release. See https://www.tensorflow.org/xla/custom_call for details.
- XLA:GPU reductions are deterministic by default (reductions within
jit_compile=True
are now deterministic). - XLA:GPU works with Horovod (OSS contribution by Trent Lo from NVidia)
tf.saved_model.save
:- When saving a model, not specifying a namespace whitelist for custom ops with a namespace will now default to allowing rather than rejecting them all.
Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
8bitmp3, Abhilash Majumder, abhilash1910, AdeshChoudhar, Adrian Garcia Badaracco, Adrian Ratiu, ag.ramesh, Aleksandr Nikolaev, Alexander Bosch, Alexander Grund, Annie Tallund, Anush Elangovan, Artem Sokolovskii, azazhu, Balint Cristian, Bas Aarts, Ben Barsdell, bhack, cfRod, Cheney-Wang, Cheng Ren, Christopher Bate, collin, Danila Bespalov, David Datascientist, Deven Desai, Ehsan Kia, Ellie, Fan Du, fo40225, Frederic Bastien, fsx950223, Gauri1 Deshpande, geetachavan1, Guillaume Klein, guozhong.zhuang, helen, Håkon Sandsmark, japm48, jgehw, Jinzhe Zeng, Jonathan Dekhtiar, Kai Zhu, Kaixi Hou, Kanvi Khanna, Koan-Sin Tan, Koki Ibukuro, Kulin Seth, KumaTea, Kun-Lu, Lemo, lipracer, liuyuanqiang, Mahmoud Abuzaina, Marius Brehler, Maxiwell S. Garcia, mdfaijul, metarutaiga, Michal Szutenberg, nammbash, Neil Girdhar, Nishidha Panpaliya, Nyadla-Sys, Patrice Vignola, Peter Kasting, Philipp Hack, PINTO0309, Prateek Gupta, puneeshkhanna, Rahul Butani, Rajeshwar Reddy T, Reza Rahimi, RinozaJiffry, rmothukuru, Rohit Santhanam, Saduf2019, Samuel Marks, sclarkson, Sergii Khomenko, Sheng, Yang, Sidong-Wei, slowy07, Srinivasan Narayanamoorthy, Srishti Srivastava, stanley, Stella Alice Schlotter, Steven I Reeves, stevenireeves, svobora, Takayoshi Koizumi, Tamas Bela Feher, Thibaut Goetghebuer-Planchon, Trent Lo, Twice, Varghese, Jojimon, Vishnuvardhan Janapati, Wang Yanzhang, Wang,Quintin, William Muir, William Raveane, Yasuhiro Matsumoto, Yi Li, Yong Tang, zhaozheng09, Zhoulong Jiang, zzpmiracle